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Probabilistic Models for Uncertainty Quantification
of Soil Properties on Site Response Analysis

Thanh-Tuan Tran, Ph.D."; Kashif Salman?; Seung-Ryong Han, Ph.D.3; and Dookie Kim*

Abstract: The geotechnical properties of soil deposit and the variability associated with their probable distributions have a profound impact
on the seismic response of a site. In the present work, the influences of soil profile characterizations corresponding to the shear wave velocity
(V,), density, and material degradation using various probabilistic distributions are investigated. A stochastic process is introduced for solving
the spatial variability in soil deposit via Monte Carlo simulations. The results are validated with those obtained from the reference solution
using the Strata program version 0.5.5. Additionally, sensitivity analysis is conducted to investigate the effect of the random input variables in
the soil profile. The analysis concludes that the consideration of probabilistic distributions of the geotechnical parameters plays a significant
role in evaluating the reliability of a site. The variability in material degradation has a greater impact than the unit weight on site response.
Furthermore, comparatively the variability in V for both the Toro model and log-normal distribution is identical for periods greater than 1.0's,
while in the range of lower periods, the former is lower than the latter with maximum reductions of 11.14% and 20.86% in surface response
spectra and amplification factor, respectively. DOI: 10.1061/AJRUA6.0001079. © 2020 American Society of Civil Engineers.

Author keywords: Stochastic analysis; Probabilistic distribution; Soil variability; Site response analysis.

Introduction

Predicting the dynamic behavior of local soil is an essential aspect
of seismic risk assessment that can be calculated through site re-
sponse analysis (SRA) (Kramer 1996). In previous studies, several
methods for analyzing the ground response have been proposed,
including one-dimensional (1D) SRA (Hashash 2012; Idriss and
Sun 1993; Kim et al. 2016; Kottke and Rathje 2008), two-
dimensional (2D) SRA (Hudson et al. 1994), and finite element
programs (McKenna 2011). One-dimensional ground response
analysis is performed using a frequency-domain equivalent-linear
(EQL) method (Idriss and Seed 1968; Idriss and Sun 1993;
Schnabel et al. 1972) and a time-domain nonlinear (NL) method
(Hashash 2012). The EQL approach has been widely used due
to its simplicity (Du et al. 2018; Du and Pan 2016; Kaklamanos
et al. 2013; Tran et al. 2018). This approach was first proposed
by Idriss and Seed (1968) and was adopted in the SHAKE program

nstitute of Offshore Wind Energy, Kunsan National Univ., 558
Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Republic of Korea; Faculty
of Technology and Technique, Quy Nhon Univ., 170 An Duong Vuong
St., Quy Nhon City, Binh Dinh 55100, Vietnam. Email: tranthanhtuan@
kunsan.ac.kr; tranthanhtuan @hotmail.com.vn

ZResearcher, Dept. of Civil and Environmental Engineering, Kunsan
National Univ., 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Republic
of Korea. Email: kashifsalman96 @ gmail.com

3Research Institute, Korea Electric Power Corporation Engineering and
Construction, 269 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea.
Email: hoanung @kepco-enc.com

4Professor, Dept. of Civil and Environmental Engineering, Kongju
National Univ., 1223-24 Cheonan-daero, Seobuk-gu, Cheonan-si,
Chungcheongnam-do 31080, Republic of Korea (corresponding author).
ORCID: https://orcid.org/0000-0001-5695-8240. Email: kim2kie @kongju
.ac.kr

Note. This manuscript was submitted on December 9, 2019; approved
on April 7, 2020; published online on June 18, 2020. Discussion period
open until November 18, 2020; separate discussions must be submitted
for individual papers. This paper is part of the ASCE-ASME Journal
of Risk and Uncertainty in Engineering Systems, Part A: Civil Engi-
neering, © ASCE, ISSN 2376-7642.

© ASCE

04020030-1

by Schnabel et al. (1972). Later, the program was modified to
SHAKEI1 by Idriss and Sun (1993).

In the practical earthquake engineering applications for struc-
tures [i.e., buildings, foundations, nuclear power plants (NPPs),
etc.], it is necessary to perform ground response analysis in order
to predict the adequate seismic response (Cao et al. 2019; Nguyen
and Kim 2017; Nguyen et al. 2020; Salman et al. 2020). The var-
iabilities in the soil profile are the primary parameters that must be
considered for a sophisticated solution due to their effect on the site
response. Therefore, it is required to develop a simulation tech-
nique that accounts for the effects of uncertainty of random input
variables on the seismic response. The stochastic model is capable
of solving a large number of simulations, and the selection of prob-
ability distribution functions representing the variation of input
variables is an important part for statistical analysis (Bazzurro
and Cornell 2004; Darendeli 2001; Rota et al. 2011; Toro 1996;
Tran and Kim 2019; Wang et al. 2018, 2015). For example, Wang
etal. (2015) studied a statistic concept called the mixture model and
the Bayes’ theorem to obtain the site-specific probability distribu-
tion of soil properties. Toro (1996) developed a statistical model
to randomize the layering and shear wave velocity (V), where
the uncertainty of V; was described as the log-normal distribution.
Rota et al. (2011) proposed a fully probabilistic process that
considers the variability in input ground motions and dynamic soil
properties for a site in central Italy. In addition, Bazzurro and
Cornell (2004) performed Monte Carlo simulations (MCS) for
the uncertainty of soil properties to evaluate the amplification
between the ground shaking and the bedrock motion. In another
study, an empirical model was proposed by Darendeli (2001)
for investigating the variability of nonlinear properties. However,
to the best knowledge of the authors, no studies on the influence
of probabilistic variations in site characteristics on the stochastic
site response analysis have been reported in the published literature.
Thus, the challenge is how to consider this effect on the generation
of soil profiles.

Based on the above literature surveys, this study aims to inves-
tigate the effect of different probabilistic distributions of geotech-
nical parameters of a soil deposit. The numerical simulation is
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Table 1. Geotechnical properties of the site

Thickness Vi Unit weight o
Layer (m) (m/s) (kN/m?) (atm*) OCR  PI
Layer 1 6 250 18 0.36 1.0 10
Layer 2 25 300 18 2.2 1.0 10
Layer 3 30 460 19 5.6 1.0 10
Layer 4 30 700 22 7.7 1.0 10

datm = standard atmosphere pressure unit.
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Fig. 1. Nonlinear modulus reduction and damping for soil.

conducted for a deep alluvium site, which is situated within the
Transverse Ranges structural province of Southern California
(Gibbs et al. 1996). Several random variables such as V, density
(7), and material degradation (Aladejare and Wang 2017) were con-
sidered. Uncertainties of these variables are applied in the stochas-
tic analysis for predicting the response of the site. A computer
program for a probabilistic site response analysis, PSHAKE, is
developed based on the original SHAKE91 framework for solving
the variabilities in soil characterizations with different probability
distributions via MCS. The variable randomizations include the
variations of (1) V; using the normal or log-normal distribution,
(2) V, using the Toro model, (3) unit weight, and (4) dynamic soil
properties based on the Darendeli model. To verify the accuracy of
the proposed solution, the Vg uncertainty using the Toro model is
carried out. Results in peak ground acceleration (PGA), maximum
shear strain, surface response spectra (Sa, ), and amplification func-
tion (AF) are compared with the reference solution of Strata soft-
ware developed by Kottke and Rathje (2008). Furthermore, the
effects of different input parameters of soil properties are carried
out using sensitivity analysis.

0.4

Acceleration (g)
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Site Description and Input Motion

Geotechnical and Geophysical Parameters of Site

Soil properties are natural parameters of geomaterials and vary from
site to site (Wang et al. 2016); thus, determining these parameters
plays a significant role in geotechnical analyses and designs. In this
research, the specific site located in the San Fernando Valley of
Southern California, namely, Sylmar County Hospital (SCH)
(Gibbs et al. 1996), is selected for site response analysis. The proper-
ties of the site for each layer are summarized in Table 1. The soil
medium has about 90 m alluvium soil above bedrock, with shear wave
velocities of 250 m/s at the surface and 700 m/s at 60 m depth.

Shear modulus degradation and damping (MRD) are also key
parameters in calculating the ground response. The variation of
shear modulus with shear strain of soil is described by shear modu-
lus reduction, while the variation of damping with shear strain is
defined by the damping curve. It is worth mentioning that the char-
acteristics of nonlinear soil properties are complex; thus, in this
study, the soil material model proposed by Darendeli (2001) is ap-
plied for each layer. The parameter for this model is defined as a
function of mean effective stress (o), overconsolidation ratio
(OCR), and plasticity index (PI), in which o is used to consider
the variability in the MRD curves with its values ranging from 0.36
to 7.7 atm (Table 1). Fig. 1 shows the predicted MRD curves of the
site with values of 10 and 1 Hz for the number of cycles and ex-
citation frequency, respectively.

Seismic Input

In this research, the time history recorded on January 17th of 1994
during the Northridge earthquake at the Arleta Nordhoff fire station
is used for performing the site response analysis. The signal is
obtained from the Pacific Earthquake Engineering Research Center
(PEER) Ground Motion Database (Ancheta et al. 2012). The PGA
and time interval of the input motion are 0.35 g and 0.02 s,
respectively, and it is applied at the bedrock of the numerical
model. This seismic input is representative of strong motion regis-
tered for a station close to the seismic source (distance to the fault is
3.9 km), and it is commonly used in many studies (Gibbs et al.
1996; Hussan et al. 2018; Nguyen et al. 2014; Tran and Kim
2019). Fig. 2 represents the time history of ground motion and
the resulting response spectral in this analysis.

Variability in the Soil Profile

Uncertainty in the soil properties for the ground response analysis
can be effectively randomized using Monte Carlo simulation.

Sa (g)

-3 L L
10° 10! 10
(b) Frequency (Hz)

Fig. 2. Earthquake record: (a) time history of motion; and (b) response spectra.
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The relevant input parameters such as V, v, and MRD are most
effective for evaluating the response of the specific site. In practice,
it is difficult to model and estimate the variability of geotechnical
properties of a site with a probabilistic distribution. Thus, this re-
search aims to address this challenge using the stochastic concept
under various uncertain cases. Four cases based on the variability of
geometrical properties are addressed that include variations in the
following: Vg using a log-normal distribution (Case 1), Vg using
the Toro model (Case 2), unit weight (Case 3), and dynamic soil
properties using the Darendeli model (Case 4). The detailed sim-
ulations for each case are described as follows.

Spatially Varied Shear Wave Velocity Profiles—Toro
Model (Case 1)

Toro (1995) developed a probabilistic model for shear wave veloc-
ity profiles based on the design guideline provided by EPRI (1993).
This model is used to simulate the artificial soil profile, and it con-
sists of two separate parts. The first one is a layering model that
captures the variability in layer thickness. The second part is for
the V associated with each layer, called a velocity model.

In this study, the randomized V; profiles are generated from the
Toro model, which is described as a log-normal distribution with
the median of V, In(V,,,gian.;)» and the standard deviation of V,
ov- The shear wave velocity of layer i, (V;), can be expressed as

Vi = exXp [Zi * Oy + ln(vmedian.i)] (1)
where Z; = random standard normal variable for layer i:

7 €1, for the surface layer
" pZiy + /1= p%,  forother layers

where Z;_; = standard normal variable of the previous layer; and
€1 = independent normal random variable with zero mean and unit
standard deviation. The p in Eq. (2) can be defined as

p(d, h) = [1 = pa(d)lpy(h) + pa(d) (3)

where p, and p, represent the thickness-dependent and depth-
dependent correlations, and they are expressed as a function of
thickness (#) and depth (d), respectively:

(2)

pu(h) = poe=4) (4)
<M) b d <200

pald) =4 P\200+4,) ° ¢ (5)
02005 d > 200

where py, pago» do, b, and A = fitting factors of the model.

Log-Normal Distribution (Case 2)

The log-normal distribution is widely used to model the physical
values of engineering phenomena (Kim 2017). The uncertainty of
V, with the standard deviation oy, y, is calculated using the relation-
ship between the log-normal function (Benjamin and Cornell 2014;
Kim 2017) as follows:

Ohvs = In (COV%/Y + 1) (6)

where COVy, = 7t = exp(at, ) — 1 is the coefficient of varia-

tion (COV) of V; and py, = mean of V.
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Simulation of Density Variability (Case 3)

Similar to Case 2, the variability in density is also simulated using
the log-normal approach. Therefore, following Kim (2017), the
distribution of unit weight is expressed using Eq. (6).

Generated Nonlinear Soil Properties (Case 4)

According to Darendeli (2001), the uncertainty in MRD is modeled
as a normal distribution. The random variable G/G,,, and D are
produced from the baseline (mean) values ([G/G pax (V)] mean @0d
[D()],nean) corresponding to uncorrelated random variables (g,
and ¢,) with zero mean and unit standard deviation, respectively.

The G/G. and D values are computed from Eqs. (7) and (8)

G/Gmax (’Y) = [G/Gmax(r}/)]mean + €10NG (7)

D(7) = [D(M]ean + popEI +0py/ 1 — p*er (8)

where oy and o = standard deviations of the normalized shear
modulus and damping ratio, respectively, and they are given as
follows:

025 (g —05)
— exp(—4.23 — G
NG = exp( )+ \/exp(3.62) exp(3.62)

op = exp(—5.0) + exp(—0.25)\/D(%) (10)

Based on the previous discussions, the different models for ran-
domizations are graphically illustrated in Fig. 3. Note that in the
first two cases, the randomizations of the shear wave velocity
are considered with different approaches, and the results in which
the COV of 0.3 is assumed to be the same are then compared.

©)

Framework of Stochastic Site Response Analysis

Methodology

The stochastic site response analysis is conducted for a site due to
seismic loading based on the MCS that is adopted for the models
with a large number of aleatory variables (Baecher and Christian
2005). Fig. 4 shows the schematic description of the process with
the MCS module. The MCS module repeats the subprocess for
each simulation and conducts statistical analysis (i.e., mean values
and standard deviations). The computer program written in Python
programming, PSHAKE, has been developed based on the afore-
mentioned stochastic process (Tran et al. 2020). The solution can
consider the uncertainties of geotechnical parameters such as V,
layer thickness, unit weight, and material degradation. This meth-
odology proceeds as follows:
1. Determine the statistical properties for the various parameters;
2. Generate the input variables;
3. Conducte the ground response analysis for each simulation and
record the response; and
4. Statistical analysis of the results.

The parameters required for the program consist of the acceler-
ation data and the control input file (e.g., control.inp). In the control
file, the COV parameter is defined to consider the variation of
the soil profile. The response parameters, including peak ground
motion profile, maximum shear strain profile, surface response
spectra, and amplification factors, are considered for the statistical
analysis.
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Fig. 3. Graphical representation of the variability of (a) shear wave velocity; (b) unit weight; and (c) nonlinear property curves.

Verification of the Proposed Process

The seismic response of the soil is sensitive to the variability in the
soil profile. It is important to validate these properties of the soil
deposit for sophisticated analysis. For verification purposes, the
randomization of shear wave velocity following the Toro model
is performed. The COV of 0.317 is used to consider the spatial vari-
ability of the soil profile. To verify the accuracy of the proposed
program, a comparative solution is presented between this study
and the Strata program based on (1) the PGA and maximum shear
strain in the soil profile and (2) the surface response spectra, Sa,
and amplification factor, AF, for the soil profile.

Fig. 5 displays the comparison of the PGA and maximum shear
strain profile obtained from PSHAKE and Strata. A comparison of
the mean values with the varying depth of the soil profile is enlisted
in Table 2 with the maximum difference of 5.86% and 9.70% for
PGA and maximum shear strain profiles, respectively. Based on the
analysis, the difference between the two methods is comparable.
This concludes that the proposed program has a good agreement
with the reference solution.

In site response analysis, the amplification function is used to
determine the amplification effect induced by the ground motion.
The AF is defined as the ratio between response spectra at the soil
surface to the bedrock (Barani et al. 2013). The AF is expressed as

Say(T)

AR = G

(11)

where Sa,(T) and Sa,(T) = acceleration response spectrum of
motions at the surface and at the bedrock, respectively.
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In Fig. 6, the Sa, and AF of both PSHAKE and Strata are pre-
sented. The agreement in the dynamic response parameters mani-
fests that results recorded from the proposed analysis and the
reference solution are consistent.

Sensitivity Analysis

To evaluate the effect of soil characteristics on the stochastic site
response analysis, the sensitivity analysis is performed by random-
izing one parameter and keeping the others constant. A total of
500 simulations for each case described in the “Variability in the
Soil Profile” section are analyzed using the PSHAKE program.
The responses in PGA, Sa,, and AF are recorded and compared
to each other. The result from Case 2 verified in the “Framework
of Stochastic Site Response Analysis” section is used as a reference
solution for the rest of the cases.

Peak Ground Acceleration

Fig. 7 illustrates the comparison between the statistical distributions
of PGA at the surface obtained from different models. These dis-
tributions are compared with the PGA at the bedrock, which is
represented by vertical lines. The uncertainty of soil property is
presented by the mean and standard deviation values that are shown
in each subfigure. It can be seen that the histogram of density
(Case 3) shows the lowest dispersion in the PGA at the surface with
a minimum value of 0.057 for standard deviation. Comparing with
the second case, the differences in mean PGA at the surface are
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13.81%, 4.28%, and 0.58% for the first, third, and fourth cases,
respectively. These results indicate that density is more efficient
on the performance of the site response.

The discrepancy in PGA at the surface of the different models is
also explained through cumulative distribution function (CDF).
The CDF of a probability distribution, F(x), is a function that de-
fines the probability of the random variable which takes a value less
than or equal to x and is expressed as

F(x) = P(X < x) (12)

The sensitivity of PGA at the surface for the various models is
evaluated in Fig. 8 through CDF. Referring to Case 2 with a PGA of
0.514 g is used to determine the changes in the CDF for other cases.
It is observed that the CDF shifts rightward with variability in the
unit weight, which implies a decrease in the probability, which is
opposite of Case 1. Note that the CDF from Case 4 has a similar
effect to Case 2 with a negligible difference. The alteration in the
PGA at the surface for different models is summarized in Table 3.
The table shows that the nonlinear property of soil is the least ef-
fective parameter to be considered for the PGA that corresponds to
the 15.08% probability. In addition, the uncertainty in shear wave
velocity using log-normal distribution is the most effective param-
eter, with the associated change of 40.12% in the probability. This
happens because the density of the soil profile has a lesser effect on
the stiffness of the soil profile compared to the shear wave velocity.
The results obtained for PGA are found to be the same as inves-
tigated by Rathje et al. (2010).

207

401

Depth (m)

60|

80

100
10
(b) Max. Shear Strain (%)

4

Fig. 5. PGA and maximum shear strain profiles of PSHAKE and Strata: (a) PGA (g); and (b) max. shear strain (%).

Table 2. Comparisons of mean PGA and maximum shear strain between PSHAKE and Strata

PGA (g) Max. shear strain (%)
Depth (m) PSHAKE Strata Difference (%) Depth (m) PSHAKE Strata Difference (%)
0.0 0.514 0.486 5.86 3.0 0.040 0.039 1.86
6.0 0.455 0.438 3.80 18.5 0.232 0.212 9.70
31.0 0.312 0.306 1.84 46.0 0.075 0.072 3.44
61.0 0.227 0.235 -3.10 76.0 0.028 0.026 8.33
91.0 0.195 0.198 —1.80 — — — —
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Fig. 6. Surface response spectra and amplification functions of PSHAKE and Strata: (a) surface response spectra; and (b) amplification function.

80 T T T T T T T
Mean: 4.43e-01
Std. Deviation: 1.30e-01

PGA at rock

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PGA (g)
(@)
80 T T T T T T T
Mean: 5.36e-01
60 PGA at rock —| Std. Deviation: 5.71e-02
40 - 1
20 - 1
0 1 L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PGA (g)
(©

80 T T T T T
Mean: 5.14e-01
60 PGA at rock Std. Deviation: 1.20e-01
40
20
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PGA (g)
(b)
80 T T
60 PGA at rock
40
20
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PGA (g)
(d)

Fig. 7. Probabilistic distribution of the PGA at the surface: (a) Case 1; (b) Case 2; (c¢) Case 3; and (d) Case 4.
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Fig. 8. Cumulative distribution function of PGA at the surface for
different models.

Acceleration Response Spectra

The statistical response spectrum of spectral accelerations at the
surface is shown in Fig. 9. In general, the uncertainty in density
shows the smallest dispersion in the response that manifests the
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Table 3. Variations in probability of PGA with different cases

Case Case 1 Case 2 Case 3 Case 4
Value of probability 84.19 44.07 15.08 43.22
Change (%) 40.12 0.00 —28.99 —0.85

negligible effect on the acceleration response spectra. Fig. 10 con-
siders the sensitivity of soil characteristics in site response analysis
with the mean (p) and standard deviation (o) in the response ob-
tained from Fig. 9.

In Fig. 10(a), the difference in the mean surface response spectra
calculated from the first case is lower than the second case, with the
maximum reduction of 11.14%. Although the log-normal distribu-
tion is considered for V variability in the first two cases with differ-
ent approaches (log-normal distribution and Toro model), Case 1
has a reduction at periods less than 1.0 s. Additionally, a concur-
rence is found for Case 3, although it has an increment of 16.97%
occurring at 0.8 s. The variability of nonlinear soil causes a dec-
rement in the mean spectral acceleration, as shown in Fig. 10(a),
and a maximum decrement of 22.08% occurs at periods less than
1.0 s. This manifests the softness of the soil profile (i.e., the softer
material modeling with higher damping) effect AF more than the
stiffness of the soil profile (Rathje et al. 2010). Another observation
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Fig. 10. (a) Mean surface response spectra; and (b) standard deviation for different models.

is the standard deviations of Sa, which is illustrated in Fig. 10(b).
The smallest o, in Case 3 occurs in the period range (less than
0.2 s), while other cases have an increasing trend at periods less
than 0.35 s and a decreasing trend at periods greater than 0.7 s.
Based on the results obtained, it is worth mentioning that the varia-
tion of unit weight yields the strongest mean surface spectra and the
smallest standard deviation. According to the wave propagation
theory, the site response depends on the unit weight and shear wave
velocity (Aki and Richards 2002). However, in this research, both
density and V are simulated with the same value of COV, which is
assumed to be equal to 0.3; hence, the higher mean surface spectra
can be found in Case 2. Besides, the frequency of ground motion
may amplify or deamplify the site response if the site medium con-
tains a high frequency.

In the ground response analysis, the amplification can be de-
fined either by amplification factor or by a frequency-independent
amplification factor, F, (Barani et al. 2013). The F, is defined as a
ratio of the acceleration response spectrum intensity at the surface,
ASI¥, to the acceleration response spectrum intensity at the rock
outcrop, ASI” (Von Thun et al. 1988)

_ASE
T ASIT

(13)

where the acceleration response spectrum intensity can be ex-
pressed by integrating the acceleration response spectrum, S, (7),
in the range of spectra period, 7', (Aki 1993)
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2.5
ASI:/ S,(T)dT (14)
0.05

Fig. 11 is the histogram of F, for the different models. The com-
parative analysis for the mean and standard deviations of F, is pre-
sented. The distributions of frequency-independent amplification
factors depend on the shape of a response spectra. In particular,
randomizing the nonlinear properties of the soil profile are more
indicative for the higher standard deviations of F,. The histogram
of Case 3 shows the lowest dispersion in the distribution of the F,
with 0.181 of the standard deviation. Following the difference be-
tween Cases 1 and 2, it can be deduced that the selection of the site-
specific probability distribution of geotechnical parameters has a
great impact on the probabilistic soil models.

In the Toro model, shear wave velocities are simulated based on
the mean and standard deviation of soil properties that are obtained
from a large number of data sets collected from many sites. Thus,
the variability of geotechnical parameters within this specific site
does not represent the others. This variability is also responsible for
the difference in the first two cases. Therefore, it is necessary to
consider the probabilistic distribution of soil properties carefully
to make a consistent group of parameters for the site analysis.

Amplification Function

Fig. 12 shows the comparison of the mean and standard deviation
of amplification factors. The trend of AF's is the same as in Fig. 10.
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Fig. 11. Histogram distribution of F, for different models: (a) Case 1; (b) Case 2; (c¢) Case 3; and (d) Case 4.
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Fig. 12. Mean amplification functions and standard deviation for different models: (a) mean amplification function; and (b) standard deviation.

In Fig. 12(a), the mean AF's at lower frequencies are smoother than
those for the higher frequencies. The uncertainty in the V; with the
log-normal distribution and the Toro model is the same in the range
of frequencies lower than 0.8 Hz. It is also noticeable that when
considering the uncertainty in the unit weight, the mean AF is sim-
ilar in the shape with Case 2 except the higher peak occurs at
around frequency of 1 Hz. Considering the effect of uncertainties
in the nonlinear soil, the mean AF has a lower effect with a reduc-
tion of about 4%—26% compared with the second case. Comparing
the standard deviation values in Fig. 12(b), the results show that the
values from Case 3 indicate the lower effect. Moreover, standard
deviations observed from Case 4 are close to the low frequency
and have a large difference at high frequency (38%—-60%).

This research investigates the influence of input parameters of
the soil and shows that nonlinear soil properties with probabilistic
distribution significantly affect the soil response. The outcomes
obtained in this research, specifically in the AF of soil deposit,
are found to be in good agreement with the investigation by
Aki (1993).

Conclusions

This study presents an approach for the probabilistic procedure for
site response analysis that is implemented in the computer program
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PSHAKE. The framework allows considering the uncertainties in
geotechnical properties of soil deposit associated with the soil pro-
file and its material parameters. The numerical simulation is pre-
sented for a specific site in the San Fernando Valley of Southern
California. Verification and validation of the process are performed
for the uncertainty in the Vg using the Toro approach. The compat-
ibility of the proposed procedure is considered with the Strata pro-
gram based on the agreement in response analyses (i.e., PGA
profile, maximum shear strain profile, surface response spectra,
and amplification factor). Thus, the solution can be used effectively
for statistical analysis in predicting the site response.

Through the sensitivity analysis, the effects of the uncertain
properties, including the shear wave velocity, the unit weight,
and the shear modulus reduction and damping, on site responses
are examined by the various probabilistic distributions. The main
findings of the study are summarized below:

e Ttis significant to consider the varying probabilistic distributions
of soil profiles for the generation of site response more sophis-
ticatedly. The results obtained confirm that the modeling of the
uncertainties in the soil properties has a significant impact on the
mean and standard deviation in the statistical analysis.

e Comparatively, the variability in V; from the Toro model is
found to be similar to the log-normal distribution of the geotech-
nical profiles of soil in Sa; and AF for periods greater than 1.0 s.
Conversely, in the range of lower periods, the response from the
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Toro approach is more effective than a log-normal approach
with maximum reductions of 11.14% and 20.86% in Sa, and
AF, respectively.

* It has been found that the spatial variability in shear wave veloc-
ity using log-normal distribution is the most effective parameter
with the change in probability of 40.12% in PGA at the surface.

e The randomness in the unit weight has less dispersion in the
surface response. The mean Sa, and AF are consistent with
those from the Vg randomization using the Toro approach,
although the higher peak occurs around 0.8 s.

* Randomness in material degradation follows the maximum dec-
rements of 22.08% and 43.44% in Sa, and AF at a period of less
than 1.0 s. Regarding the PGA at the surface, the results show
that material degradation has a smaller effect that corresponds to
the change of 0.85%.
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