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A B S T R A C T

Effects of spatial variability of structural properties on seismic responses of cabinet facility in the nuclear power
plant are investigated. For the nonlinear behaviour of the cabinet, the effects of the softening and axial force are
investigated through the analytical model. The accuracy of the model is verified against the experimental tests. To
account for the randomness of material and geometrical properties, input variables are treated as random variables
and produced with the random field theory. An efficient method using the combination of a covariance matrix
decomposition (i.e. Cholesky, Eigen, and modified Cholesky decompositions) and a midpoint discretization method
is proposed and it is implemented for the stochastic response analyses of structures. The effectiveness of the
method is evaluated with the dispersion and uncertainty of output responses. It is found that the heterogeneity of
material properties has a strong influence on the seismic vulnerability assessment of cabinet facility, and the
performance of modified Cholesky decomposition is better than other methods in generating random fields.

1. Introduction

The non-structural components in a structure like electric cabinets
play an important role in nuclear power plants (NPPs). The safety of
this equipment must be evaluated to demonstrate its abilities under
earthquake excitations. The seismic performance of these non-struc-
tures has been investigated in a few studies (Cho et al., 2011; Hur,
2012). The researchers have focused on the risk assessment of the dy-
namic behaviour of cabinet structures by modelling the finite element
models (Lim, 2016; Tran et al., 2019) or on performing experimental
tests (Bandyopadhyay et al., 1987; Cho et al., 2011; Kim et al., 2012;
Koo et al., 2010; Nguyen and Kim, 2014). Hur (2012) developed a
simplified model for cabinets that includes the frame and shell elements
for structural elements. In this model, the connections between framing
members and panels have been modelled using the nonlinear springs.
Gupta et al. (1999) proposed a method using the Ritz vector approach
to accurately evaluate the in-cabinet response spectra for seismic qua-
lification of cabinet structures. The method was then modified by Gupta
and Yang (2002) to overcome limitations that were encountered during
applications to actual cabinets. Recently, the safety assessments of NPP
and its equipment have been investigated by fragility curves using the
lognormal approaches (i.e. maximum likelihood estimation, linear re-
gression) or artificial neural networks (ANN) (Nguyen et al., 2019; Thai
and Kim, 2015; Tran et al., 2018a,b, 2019; Wang et al., 2018).

The structural behaviours associated with the uncertain input
variables can be predicted using the stochastic approach. This approach
has been presented for various structures in many works (Eem and Kim,
2019; Jenkel et al., 2015; Kala, 2011; Kotełko et al., 2017; Sahu et al.,
2019; Yue and Ang; 2017). Kotełko et al. (2017) investigated the effects
of input variables (i.e. material and geometrical parameters) of box-
section girders due to pure bending using the Monte Carlo simulations.
Kala (2011) and Jenkel et al. (2015) studied the sensitivity and relia-
bility analysis of steel plane frames and timber structures considering
the variability in material properties. Likewise, Yue and Ang (2017)
carried out the stochastic response and reliability of the tunnel-soil
system using the random field theory. In the field of geotechnical en-
gineering, various researchers studied the randomizations of geo-
technical properties (Griffiths et al., 2009; Tran et al., 2018a,b; Xu,
2011). Griffiths et al. (2009) reported the effects of spatial uncertainty
on slope reliability through the random finite element method, com-
bining from a finite element model and random field model
(Vanmarcke, 1982, 2010). However, in the case of cabinet facility, the
consideration of system parameters is still limited. Thus, it is necessary
to develop a technique to accurately predict the nonlinear behaviour of
cabinet structures due to earthquake loadings, particularly when the
material and geometrical parameters are varied. In the present work,
the spatial variability of these input variables is captured with the
random field theory.
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In addition, the configuration, mass, and stiffness of the cabinet
facility can vary due to the uncertainties of the structure (i.e. geome-
trical and material parameters). Therefore, the finite element model is
complex and difficult to apply for practical use in probabilistic simu-
lation. In this study, a beam stick model is developed in practice to
represent the structural behaviour subjected to earthquake loadings.
The effects of axial force and Duffing’s type of the restoring force are
taken into account while investigating the nonlinear seismic behaviour
of cabinets. Experimental tests have also been performed to verify the
accuracy and efficiency of the proposed model.

The above discussions lead to the question of how to model and
quantify the randomness of structural properties of a cabinet facility in
NPPs. This research aims to address this challenge using the probabil-
istic nonlinear analysis. A schematic diagram of the stochastic analysis
is illustrated in Fig. 1. Firstly, a random field generator is used to
generate uncertainties of input variables. Then, time history analysis for
the structure is conducted. The procedure is repeated for each combi-
nation of input variables defined in the structural model. Finally, the
statistical characteristics of the response (i.e. the mean, the standard
deviation, and the covariance of variable) are obtained.

2. Random fields

According to Vanmarcke (2010), a random field can be depicted as a
continuous function related to the random variable in time and space.
The random field can be defined in one-dimension H x t( , ) where x is a
spatial variable, or in multiple-dimensions xH t( , ) where x is a vector
that contains spatial variables (Van der Have, 2015). Several techniques
have been presented to generate a random field (Griffiths et al., 2009,
Yue and Ang, 2017). These methods are classified into two categories as
shown in Fig. 2. The first class is a combination of spatially correlated
variables and a discretization method. The second class is based on the
series expansion methods that the random field is represented as a sum
of functions multiplied by random variables.

In this study, the input variables of structural properties are ex-
amined using the class I, where the random field generator based on the
Covariance Matrix Decomposition (CMD) along with a Midpoint
Discretization Method (MPM) is applied. This methodology can con-
sider the uncertainties of input parameters. Firstly, the correlation
matrix is assembled with a correlation function (Section 2.1). Then, the
decomposition correlation matrix is decomposed by various methods
(Section 2.2). The procedure is summarized as follows:

• Given a sequence of points in the random field, = X X XX { , , , }n
T

1 2 ,
then the values of X can be expressed in the form of

= +µX z x( )c (1)

where µ is the mean at each point in the field, and z x( )c is the vector
containing spatially correlated random variables.

• The random variables are generated using the CMD and determined
using the following equation

=z x LG( )c (2)

where G is the vector of independent zero mean, unit variance, nor-
mally distributed random variables; L is a decomposed correlation
matrix and can be taken by different methods such as Cholesky de-
composition (CHOL), Eigen decomposition (EIG), and modified
Cholesky (MCHOL) decomposition.

2.1. Correlation matrix

In statistical analysis, covariance is a measure of the variability of
two variables, and a covariance function depicts the spatial covariance
of a random variable process. For a random field, the covariance
function, CXij, gives the covariance of the values at the two points i(
and j)

=C i jCov( , )Xij (3)

The correlation function is related to covariance function and is
given by

=
C

ij
X

i j

ij

(4)

where i and j are standard deviations of two points i( and j).
Generally, the correlation function can be expressed using the following
models

• Exponential correlation

= =
l

( ) expij ij
ij

corr (5)

• Square exponential correlation

= =
l

( ) expij ij
ij

corr

2

(6)

• Sinusoidal correlation

= =( )
sin 2.2

2.2
ij ij

l

l

ij
corr

ij
corr (7)

where ij is the lag distance between point i and j; lcorr is the correlation
length, which represents a measure of the variable fluctuations in the
random field.
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Fig. 1. The schematic diagram for the stochastic analysis framework.
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2.2. Decomposition methods

The decomposition of the correlation matrix, ', can be derived
using the following methods.

• Cholesky decomposition (CHOL)

= LLT' (8)

where ' is the symmetric positive matrix, and L is the lower triangular
matrix. The diagonal terms are obtained by taking the square root of the
corresponding diagonal term in the correlation matrix, which is sub-
tracted by squared values of the corresponding rows of the decomposed
matrix

=
=

L R Lkk kk
j

k

kj
1

1
2

(9)

where k is equal to the row number of the computed diagonal element.

• Eigen decomposition (EIG)

= T' (10)

where is a diagonal matrix with eigenvalues of the matrix ' and is
the matrix containing associated eigenvectors.

• Modified Cholesky decomposition (MCHOL)

The MCHOL algorithm is used to avoid numerical problems which are
encountered during the comparison. If the matrix ' is a positive-definite
matrix, a factorization in Eq. (8) is always found. However, the matrix '

may be negative definite and the factorization is not unique (Higham,
2002). An MCHOL computes a factorization of the positive-definite matrix

= + E' ' , where E is small. In MCHOL, if a diagonal element is found to
be zero, then the entire associated column of L is set to zero.

3. A simplified analytical model of electric cabinet

3.1. Description of the structure and modelling assumptions

The cabinet installed in the laboratory of the Korea Institute of
Machinery and Material (Cho et al., 2011) is selected in this research.
The dimensions of the cabinet are 150 cm × 80 cm × 65 cm with a
mass of 267 kg as shown in Fig. 3(a). The accelerometers are attached
to the panel to investigate the dynamic characteristics of the structure.

Random Field Generators

Class I Class II

Generators of spatial correlated variables Discretization methods Series expansion method

Covariance Matrix Decomposition (CMD) Midpoint Method (MPM) Karhunen Loève Expansion (KLE)

Moving Average (MA) Integration point Method (IPM) Orthogonal Series Expansion (OSE)

Discrete Fourier Transform (DFT) Shape Function Method (SFM) Expansion Optimal Linear Estimation (EOLE

Fast Fourier Transform (FFT) Optimal Linear Estimation (OLE) Nyström Method (NM)

Turning Bands Method (TBM) Spatial Average Method (SAM) Galerking Based Methods (FEM & FCM

Local Average Subdivision (LAS) Weighted Integral Method (WIM) Polynomial Chaos Expansion (PCE)

Discretization methods

Midpoint Method (MPM)

Integration point Method (IPM)

Shape Function Method (SFM)

Optimal Linear Estimation (OLE)

Spatial Average Method (SAM)

Weighted Integral Method (WIM)

Series expansion method

Karhunen Loève Expansion (KLE)

Orthogonal Series Expansion (OSE)

Expansion Optimal Linear Estimation (EOL )E

Nyström Method (NM)

Galerking Based Methods (FEM & FCM)

Polynomial Chaos Expansion (PCE)

Fig. 2. Classification of random field generators (Van der Have, 2015).
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Fig. 3. Schematic view of the cabinet (Cho et al., 2011).
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The cabinet is mounted on a shaking table by welded connections. More
details of the experimental setup are presented in Cho et al. (2011).

The analytical model shown in Fig. 3(b) is used to assess the per-
formance of the cabinet due to seismic loadings. The model consists of
nonlinear beam elements arranged vertically with lumped mass along
the height of the beam. The nonlinear behaviour of the structure is
accounted via Duffing’s type restoring force (Fig. 3(c)) (Starossek,
2016) for a stress-strain relationship and effects of axial force. Model-
ling and simulation of the proposed model are implemented in MATLAB
with the set of governing equations described in the next section.

3.2. Governing equations

For an Euler beam, the relationship between stress ( )x and strain
( )x of the element can be expressed as (Cho et al., 2011)

= E ( )x x x
3 (11)

where E is the elastic modulus and is the proportional coefficient of
strain.

Consider the nonlinear behaviour using the Duffing’s equation, the
bending moment Mn can be calculated from the integral of all elemental
moments in the form of

= =M ydA E y dA E y dA1 1
n

A
x

A A

2
3

4

(12)

In the case of rectangular section ×b h( ), the above equation is
given by

=M EI EI1 1
n 3 (13)

where = h3
10

2 and EI represents the bending stiffness field of the
beam element.

Using the relation, = d y
dx

1 2
2 , the deflection equation of a beam with

nonlinear bending stiffness is given as follows

=
( )

d y
dx

M

EI EI
n

d y
dx

2

2 22
2 (14)

Then, the strain energy function stored in a beam is derived as
follows

= =U dV EI y
x

dx EI y
x

dx1
2

1
2

1
2V x x

l l

0

2

2

2

0

2

2

4

(15)

The governing equation of a beam element, considering the non-
linear restoring force, is expressed as

+ =M U K U K U F[ ] { ¨ } [ ] { } [ ] { } { }e e e e N e e e
3 (16)

where U{ }eand F{ }e are displacement and force vectors of beam element,
respectively; M[ ]eand K[ ]e are mass and linear stiffness matrices of beam
element; K[ ]N e is nonlinear stiffness matrix of beam element. The mass
and stiffness matrices for each element are expressed as follows
(Jabboor, 2011; Moon, 2002):

=M Al
l l

l l l l
l l

l l l l

[ ]
420

156 22 54 13
22 4 13 3
54 13 156 22
13 3 22 4

e
2 2

2 2 (17)

=

=

K EI
l

l l
l l l l

l l
l l l l

K

EI
l

l l
l l l l

l l
l l l l

[ ]

12 6 12 6
6 4 6 2
12 6 12 6
6 2 6 4

[ ]

2
5

1296 732 1296 1572
648 176 64 76
1296 252 1296 1572

648 76 648 176

e N e3

2 2

2 2

7

3 3

4 4

3

4 2 (18)

By assembling element matrices, the nonlinear equation of motion
(EoM) of the system can be given as follows

+ =M U K U K U F[ ]{ ¨ } [ ]{ } [ ]{ } { }N
3 (19)

where U F{ }and{ } are displacement and force vectors, respectively;
M[ ]and K[ ] are mass and linear stiffness matrices; K[ ]N is nonlinear
stiffness matrix.

When axial forces in the beam are considered, stiffness coefficients
will be changed. Thus, the EoM in Eq. (19) can be rewritten as

+ =M U K U K U F[ ]{ ¨ } [ ]{ } [ ]{ } { }C N
3 (20)

where =K K K[ ] [ ] [ ]C G is combined stiffness matrix; and K[ ]G is the
global geometric stiffness matrix of the beam and it is defined as
(Jabboor, 2011)

=K N
l

l l
l l l l

l l
l l l l

[ ]
30

36 3 36 3
3 4 3
36 3 36 3

3 3 4

G e
2 2

2 2 (21)

The modal coordinate system can be obtained by using the modal
matrix, [ ], of the system. The displacement, U{ }, in the physical co-
ordinate system, can be transformed into the corresponding displace-
ment, { }, in the model coordinate system as follows

=U{ } [ ]{ } (22)

Then, the EoM in Eq. (20) can be expressed in the diagonal matrix as

+ =
µ µ

F{ ¨} [ ]{ } { } 1 [ ] { }C i,
2 N,i

C,i

3

C,i

T

(23)

In which =C i µ,
2 C,i

C,i
.

4. Simulation for uncertainties of structural system

4.1. Random variations of structural parameters

To consider the variability in the cabinet structure, structural
properties are assumed as input random variables. In this research, the
stochastic analysis is performed with two parameters such as the
modulus of elasticity E( ) and moment of inertia I( ). The parameters of
these variables are listed in Table 1. The mean values for E and I are
210 GPa and ×3.79 10 mm6 4, respectively. The standard deviations and
probability distributions are taken based on previous literature (Nowak
and Collins, 2012; Waarts and Vrouwenvelder, 1999). The other
properties of the cabinet (i.e. height, mass density) are kept constants.

4.2. Stochastic motion equations

In this section, a solution for the stochastic analysis with randomi-
zation of geometrical and material parameters is given. The solution is
developed based on previous discussions. According to this, the stiffness
matrices are replaced by functions of random variables. The method is
analyzed under various cases to demonstrate the influence of structural
properties on the nonlinear response of cabinet structure.

For an element with a variation of elastic modulus and moment of
inertia of cross-sections, the bending stiffness, EI z x( ) ( , )e , is a function
of these variables (Fig. 4) and it can be expressed as

= +EI z x EI f z x( ) ( , ) ( ) (1 ( , ))e e e (24)

Table 1
Statistical details of random variables.

Property Unit Probability Distribution Mean Std.

Modulus of elastic E( ) GPa Lognormal 210 0.20
Moment of inertia I( ) mm4 Normal ×3.79 10 6 0.15
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where EI( )e is the mean value of the bending moment for beam element;
f z x( , )e is a one-dimensional random field corresponding to the un-
certainty of the bending moment. Therefore, the stiffness matrices
K[ ]eand K[ ]N e in Eq. (18) are assumed to be variable K[ ]eand K[ ]N e with
the parameter EI z x( ) ( , )e and expressed as

= +K K f z x[ ] [ ] (1 ( , ))e e (25)

= +K K f z x[ ] [ ] (1 ( , ))N e N e (26)

The displacement in Eq. (22) can be rewritten as follows

=U{ } [ ]{ } (27)

With the above description of the process of the random system
properties, the Eq. (23) can be rewritten as

+ =
µ µ

F{ ¨} [ ]{ } { } 1 [ ] { }C i,
2 N,i

C,i

3

C,i

T

(28)

5. Verification and validation

The numerical model for the cabinet developed in the previous
section is first compared to the experimental test for verification pur-
pose. The equation for the nonlinear system in Eq. (23) is solved by
using the ODE23 solver in MATLAB, where the input is the acceleration
response in time domain obtained in accordance with excitation am-
plitudes in root mean square (RMS) of 5.8 m/sec2 (Fig. 5). The proposed
model is calibrated and verified with the experimental test via the ac-
celeration response at top of the cabinet.

Fig. 6 shows a comparison of the experimental and numerical
models of the acceleration response at the cabinet top. The transfer
functions (TF) determined by responses at the top and bottom of the
model are performed to obtain fundamental frequencies. The compar-
ison is conducted for dominant frequencies in Fig. 6(b). It can be seen
that the TF obtained from the analytical model shifts rightward com-
pared to the experimental test with a difference of 13%. It leads to
conclude that the results given by the proposed model are in agreement
with experimental results.

6. Stochastic structural analysis

In order to evaluate the influences of uncertain material and geo-
metrical properties on dynamic responses of a cabinet, stochastic

structural analysis is conducted via the schematic diagram in Fig. 1.
Based on the above procedure, a MATLAB program has been written for
the nonlinear dynamic analysis of the beam stick model with un-
certainties of input parameters. The random variables representing the
structural properties of the simplified model are described in Section 4.
Fig. 4 describes the problem investigated in this research: the spatial
variability of structural properties is modelled using random field
theory, while the seismic excitation defined at the base of the structure
is not taken as input variables. The input ground motion for performing
the time history analysis is the Imperial Valley (USA) earthquake of
October 15, 1979. The data is recorded by the accelerometer of the
Pacific Earthquake Engineering Research Center (PEER) Ground Motion
Database with the peak ground motion (PGA) and time interval are
0.315 g and 0.01 s, respectively. Details of time history and resulting
response spectrum are shown in Fig. 7.

The output responses are carried out by stochastic analysis of nine
cases, which are: three decomposition methods (i.e. CHOL, EIG, and
MCHOL) for three input variable cases (i.e. elastic modulus E( ), mo-
ment of inertia I( ), and both elastic modulus and moment of inertia
EI( )). The effectiveness of each case is compared with the result ob-

served by the deterministic analysis (DA). The DA is performed with the
case where no variation is applied in the structural properties.

6.1. Free vibration response of the cabinet

Dynamic characteristics of the electrical cabinet are essential re-
sponse parameters for its dynamic behaviour. Stochastic natural fre-
quencies of the cabinet with randomization of input variables are cal-
culated for different decomposition methods. A comparison between
the statistical distributions of the first fundamental frequencies ob-
tained from all cases is illustrated in Fig. 8 and summarized in Table 2.
The first natural frequency from DA (15.12 Hz) is used as a reference
solution for comparison purpose.

The first column in Fig. 8 reports probabilistic distributions of
frequencies obtained from uncertain elastic modulus using various
methods. It can be seen that the mean natural frequency of MCHOL
method is in close agreement with the deterministic result
(error = 0.726%) while error values are 0.968% and 1.024% in the
case of CHOL and EIGEN, respectively. Moreover, the highest standard
deviation produced by CHOL method (1.425 Hz) indicates more dis-
persion of the response. Based on the observed results, it can be
concluded that the performance of MCHOL is better than other
methods.

Stochastic natural frequencies by various input variables of E I, and
EI using the CHOL method are compared in the first row of Fig. 8. It is
inferred that the dispersions of output fundamental frequencies in-
crease with the increment of the number of input random variables.
This observation can be explained from standard deviations in Table 2.
When allowing simultaneous uncertainty in EI , the histogram shows
the largest dispersion in the probabilistic distribution of frequency with

z2

z1

EI(z,x)

x

Fig. 4. Ensemble of one-dimensional random field.

Fig. 5. Acceleration response in the time domain at bottom of the cabinet.
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Fig. 6. Comparison of acceleration responses between experimental test and analytical model.

(a) Time history of motion (b) Response spectra

Fig. 7. Accelerometer record of the Imperial Valley earthquake.
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Fig. 8. Probabilistic distributions of first natural frequencies.

T.-T. Tran and D. Kim Nuclear Engineering and Design 355 (2019) 110309

6



a maximum value of standard deviation (1.826 Hz). This indicates the
importance of the random input variables when the cabinet structure is
subjected to earthquake loadings.

In addition, statistical analyses computed for each random variable
are also presented in Table 2. The results show that the natural fre-
quencies exhibit variations as a function of input random fields and
decomposition methods. When assuming the spatial variability in a
moment of inertia, the result gives less error in structural dynamic
characteristic. This implies that the geometrical property imparted to
the cabinet structure is less effective in stochastic structural analysis. In
contrast, the natural frequency shows a higher error when the uncertain
elastic modulus is considered, which implies that the material property
imparted to the cabinet structure accounts for an important proportion
of the cabinet stiffness.

6.2. Nonlinear response of the cabinet

The nonlinear response of cabinet due to uncertainty in structural
properties is presented herein. The different decomposition methods in
the CMD generator are used to obtain stochastic responses of the
structure. The effectiveness of each method for various input variables
is studied for displacement and acceleration responses at the top of the
cabinet.

6.2.1. Effects on acceleration responses
Fig. 9 and Table 3 demonstrate acceleration responses at the cabinet

top carried out by stochastic analysis for all cases. As shown in Fig. 9(a),
the acceleration response due to the randomization of elastic modulus
using the CHOL decomposition is displayed. Results are presented in the
form of all simulations, mean µ( ), and the mean ± 2 × standard de-
viation ±µ( 2 ). The µ and values for all cases are plotted in Fig. 9(b).
These results are compared with the reference solution that is re-
presented by a horizontal dash line. In general, the mean responses for
all cases are in good agreement with the result of DA. For CHOL
method, the dispersion in case of a moment of inertia is 0.459 m/s2

while the result in case of elastic modulus is 0.504 m/s2. The largest
dispersion is given for uncertainty in EI with a value of 0.568 m/s2. For
MCHOL method, the dispersions obtained from the random field E I, ,
and EI are 0.511, 0.469, and 0.547 m/s2, respectively. More detailed
data are summarized in Table 3. Furthermore, the differences between
the dispersions of accelerations are depicted in Fig. 9(c). The distribu-
tion of responses is assumed to follow the normal distribution. Although
the dispersion of all three input variables is similar, the randomization
of EI has a slight higher dispersion. Based on the obtained results, the
dispersion in output responses increases whenever there is the incre-
ment of a number of input random variables.

The discrepancies in acceleration at the top of the cabinet obtained

from different models are also explained through cumulative distribu-
tion function (CDF). The CDF of a probability distribution is a function
that defines the probability of the random variable which takes a value
less than or equal to x and is expressed as:

= P X xF(x) ( ) (29)

The sensitivity of acceleration responses for the various models is

Table 2
Statistical parameters of first natural frequency obtained from different cases.

Parameters Methods Max (Hz) Min (Hz) Mean (Hz) Std. Dev.
(Hz)

Error (%)

E CHOL 22.952 11.176 14.976 1.425 0.968
EIGEN 19.227 10.168 14.968 1.332 1.024
MCHOL 19.523 11.876 15.013 1.375 0.726

I CHOL 18.023 11.714 15.058 1.004 0.428
EIGEN 17.856 11.088 15.154 1.021 0.207
MCHOL 18.328 11.502 15.078 1.067 0.295

EI CHOL 20.848 9.479 14.904 1.826 1.446
EIGEN 19.829 9.820 14.922 1.787 1.327
MCHOL 20.811 10.901 14.967 1.747 1.029

Fig. 9. Summary of acceleration response results for all cases.
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evaluated through CDF graph in Fig. 10. The response from DA
(7.431 m/s2) is used to consider the change in the cumulative dis-
tribution function of acceleration with other cases. The change in the
probability of acceleration for different cases is summarized in Table 4.
This table shows that the moment of inertia gives the highest prob-
abilities of acceleration response with the corresponding values for
CHOL, EIG, and MCHOL are 50%, 50.64%, and 50.24%, respectively.

6.2.2. Effects on displacement responses
The influence of all input variables on the displacement responses at

the top of the cabinet is displayed in Fig. 11. Similar to the previous
section, Fig. 11(a) describes the displacement response that allows the
randomization of elastic modulus using the CHOL decomposition. The
statistical parameters of output responses for all cases are plotted in
Fig. 11(b)–(c) and tabulated in Table 5. As shown in Fig. 11(b), two
data series are displayed corresponding to the deterministic (horizontal
dash line) and random variables (column). The results show that re-
sponses in random variables tend to overestimate the response com-
pared to DA (2.814 cm), except in the case of using the EIG decom-
position method for the uncertain moment of inertia (error = 0.652%).
In order to evaluate the dispersions of displacement responses of the
cabinet, the mean and standard deviation for all cases are shown in
Fig. 11(c). For all decomposition methods, the displacement responses
in case of randomness moment of inertia, I , exhibit smaller dispersion
than those of other input variables (E and EI ). Among the

decomposition methods, MCHOL produces the lowest dispersion. The
values of standard deviations are 0.444 cm, 0.315 cm, and 0.656 cm for
E I, and EI , respectively.

Additionally, the errors of the responses compared to the DA are
shown in the last column of Table 5. Three data series are provided,
corresponding to the material property, geometrical property, and the

Table 3
Statistical parameters of accelerations obtained from different cases.

Parameters Methods Max
(m s )2

Min (m s )2 Mean
(m s )2

Std. (m s )2 Error (%)

E CHOL 8.352 6.190 7.437 0.504 0.071
EIG 8.153 6.502 7.427 0.491 0.064
MCHOL 8.046 6.503 7.403 0.511 0.387

I CHOL 8.168 6.503 7.424 0.459 0.101
EIG 8.354 6.504 7.369 0.461 0.836
MCHOL 8.284 6.503 7.401 0.469 0.402

EI CHOL 9.592 6.345 7.423 0.568 0.115
EIG 8.404 6.502 7.396 0.544 0.478
MCHOL 8.324 6.350 7.373 0.547 0.789

Fig. 10. Cumulative distribution functions of accelerations for various models
(Solid = E, Dashed = I, Dotted = EI).

Table 4
Changes in the probability of acceleration from different cases.

E I EI

CHOL EIGEN MCHOL CHOL EIGEN MCHOL CHOL EIGEN MCHOL

Value of probability (%) 49.78 49.87 50.14 50 50.64 50.24 49.89 50.15 50.38

Fig. 11. Summary of displacement response results for all cases.
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combination of material and geometrical properties. In all cases, the
MCHOL shows a good match between the DA and random field results.
For three input variable cases, the randomness in EI shows a larger
error in term of response. This demonstrates that as a number of
random field increases, the response of the cabinet increases as well. In
order to quantify the uncertainty in the displacement response due to
the randomness of input variables, the empirical cumulative distribu-
tion functions (CDF) for the output responses are illustrated in Fig. 12.
Details of histograms and the empirical CDF of input random variables
using decomposition methods on the displacement responses are dis-
cussed in Fig. 13.

7. Conclusions

Uncertainty quantification in structural seismic responses is critical
for cabinet facility while most of the current studies are limited to
homogeneous input variables. This research is to focus on the ran-
domness in structural properties of the electric cabinet. The influences
of the random variables are examined via random field theory. The
random field generator is applied based on the covariance matrix de-
composition (i.e. Cholesky, Eigen, and modified Cholesky decomposi-
tions) and a midpoint discretization method. The following are the
main contributions of the present study.

• A solution of nonlinear stochastic equations of motions for the beam
stick model of cabinet structures is presented.

• The random field theory is proposed for considering the uncertainty
in geometrical and material properties of the cabinet.

• The effects of decomposition methods on structural responses are
evaluated.

• In order to consider the impact of nonlinear behaviour on the ca-
binet, the different outputs are studied.

• Finally, the probabilistic evaluation is conducted for the cabinet
facility due to seismic loadings.

• The effects of input parameters on the distributions of the free vi-
bration, acceleration, and displacement responses are also observed.
The following findings are drawn:

• A simplified model considering the effects of axial force and
Duffing’s type restoring force has been developed for the cabinet in
nuclear power plants. The adaptability of the analytical model is
verified based on the agreement on responses with the experiment.
It was found that the transfer function produced by the proposed
model shifts rightward compared to the experimental result with an
increase of 13%.

• The results of the heterogeneity in structural properties confirm that
the uncertain geometrical property has a low effect on the seismic

Table 5
Statistical parameters of displacements obtained from different cases.

Parameters Methods Max (cm) Min (cm) Mean (cm) Std. (cm) Error (%)

E CHOL 5.519 1.039 2.848 0.470 1.189
EIG 7.028 1.458 2.837 0.443 0.807
MCHOL 4.453 1.391 2.835 0.444 0.741

I CHOL 4.604 1.822 2.819 0.291 0.169
EIG 5.704 1.884 2.796 0.309 0.652
MCHOL 4.839 1.709 2.815 0.315 0.015

EI CHOL 11.180 1.241 2.940 0.901 4.472
EIG 8.492 1.346 2.928 0.753 4.055
MCHOL 6.038 1.244 2.890 0.656 2.677

Fig. 12. Empirical response CDF.
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vulnerability assessment of cabinet facility. The probabilistic dis-
tributions for this variable show the lowest error of natural fre-
quencies with values of 0.428%, 0.207% and 0.295% for CHOL, EIG,
and MCHOL decompositions, respectively.

• The response dispersions (i.e. displacement and acceleration) de-
pend on the contribution of a number of input variables. When al-
lowing simultaneous uncertainty in elastic modulus and moment of
inertia EI( ), the dispersion is the highest compared to the case with
only one random variable (i.e. E and I ).

• It is indicated that the MCHOL method is in close agreement with
the deterministic result. The randomness in material property pro-
duces error values of 0.968%, 1.024% and 0.726% for CHOL, EIG,
and MCHOL decompositions, respectively. When assuming two
random variables, the errors have a slight higher compared to the
other cases.
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